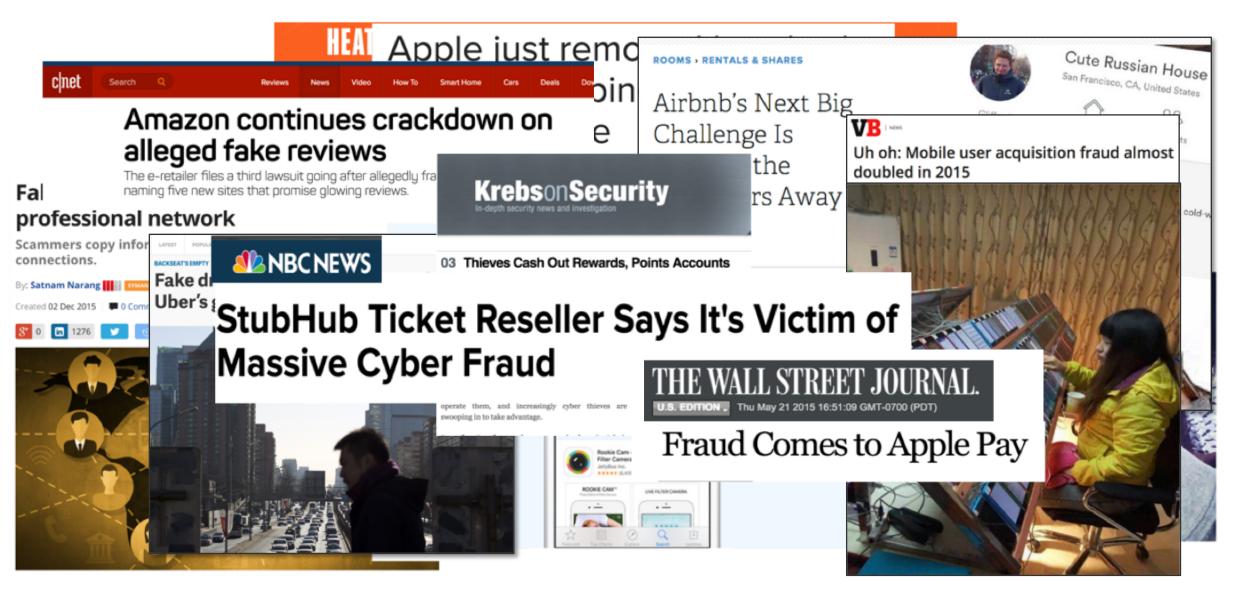
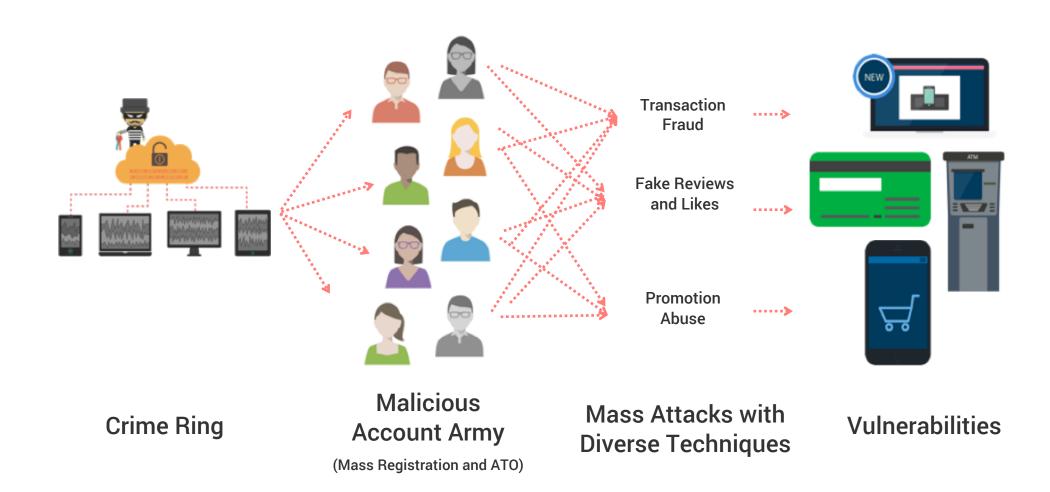


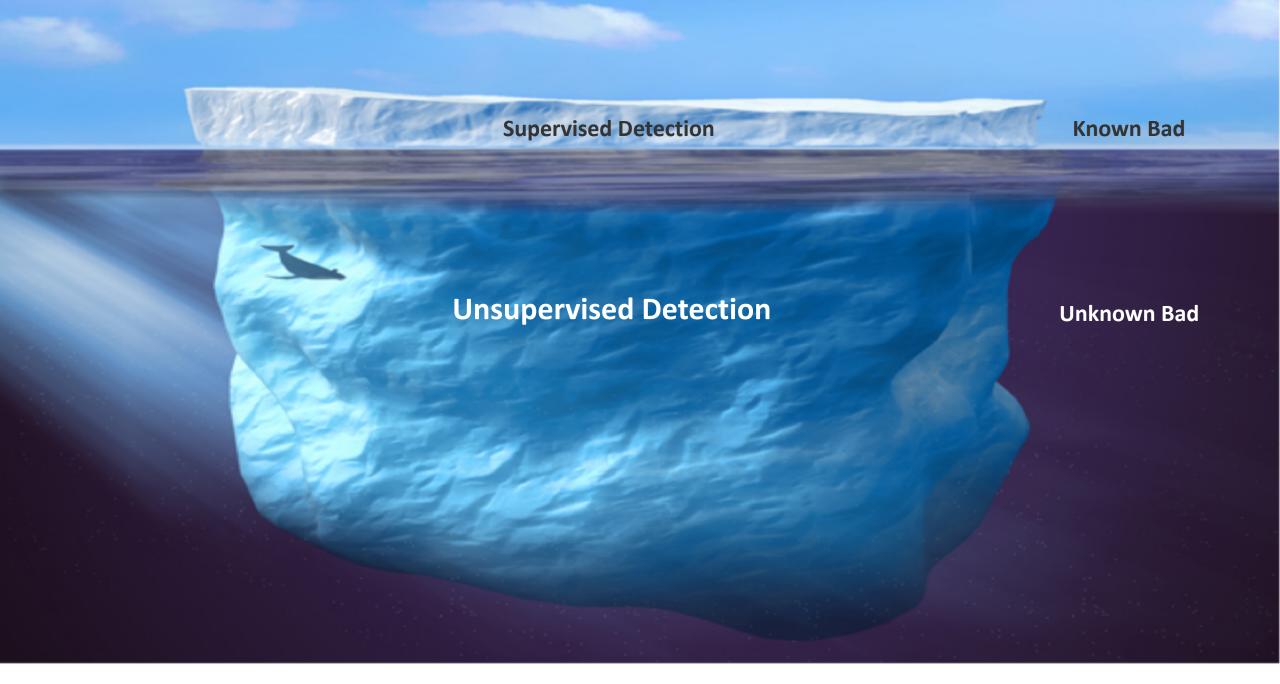
Ting-Fang Yen, Director of Research, DataVisor Sept 7, 2018

Online Fraud

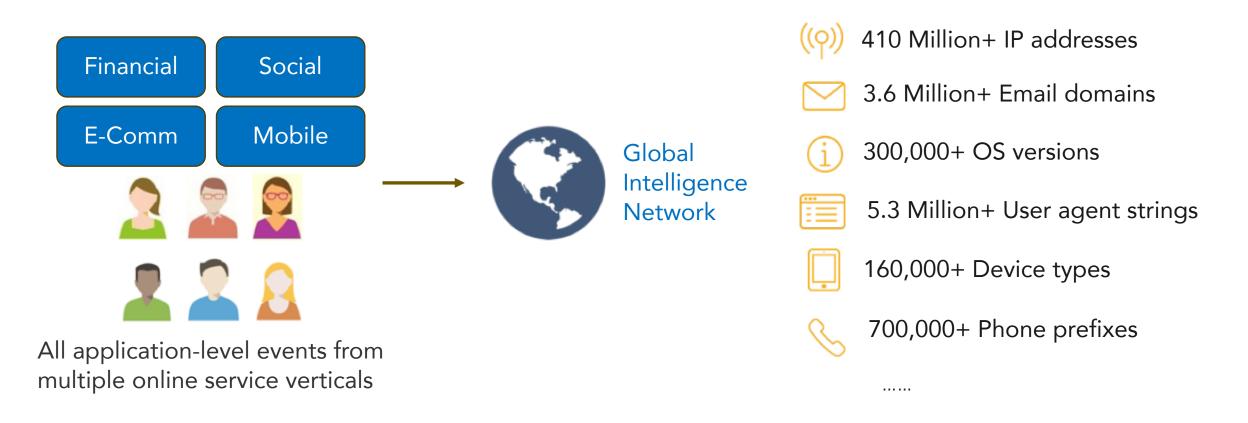


Modern Attacks are Diverse and Coordinated



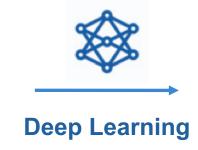


Common Digital Info in Application-Level Events



From 3 Billion+ global users, 600 Billion+ events and growing

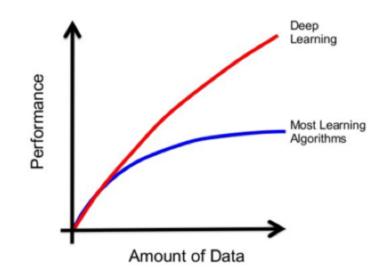
Leverage Combined Data



Derive granular user behavior information

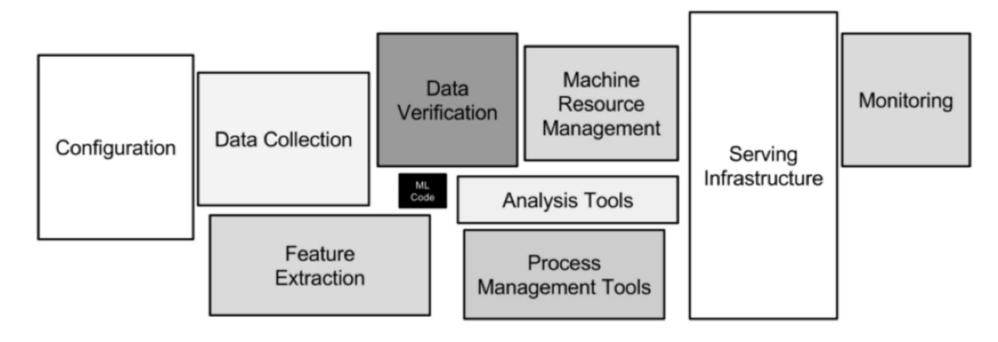
- New user ratio
- Fraudulent user ratio
- First/Last seen time
- Proxy/Data center IP
- Geolocation
-

Deep Learning Has Seen Tremendous Success



Many Deep Learning Tools

Serving ML/DL in Production is Challenging



"The required surrounding infrastructure is vast and complex."

Sculley, D., et al. "Hidden technical debt in machine learning systems." NIPS. 2015.

Spark and TensorFlow's Strengths in Productionizing Machine Learning

Pros:

- Unified engine (end-to-end solution)
- Simple API
- Speed

Cons:

Deep learning integration under development

Pros:

- Production ready (if done right)
- Extensive ML API for various tasks

Cons:

- Limited data pre-processing support
- Not end-to-end solution

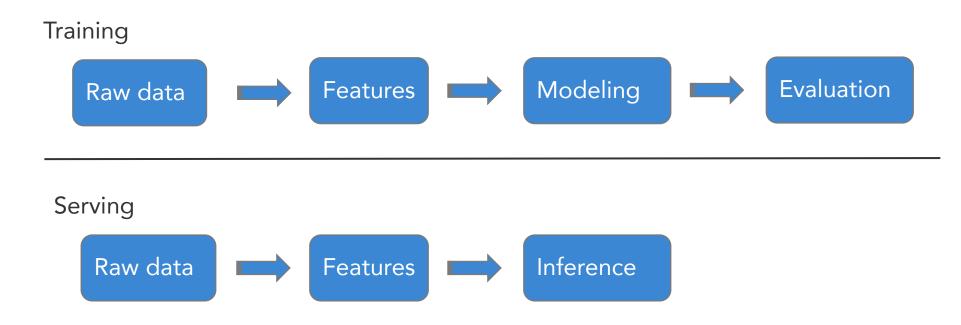
Combining Spark and TensorFlow for DL Tasks

Active direction in Spark community Spark integration with TensorFlow

- TensorflowOnSpark
- DeepLearningPipeline
- Tensorframe
- •

Can we combine TensorFlow with Spark applications (Java) to apply DL to fraud detection?

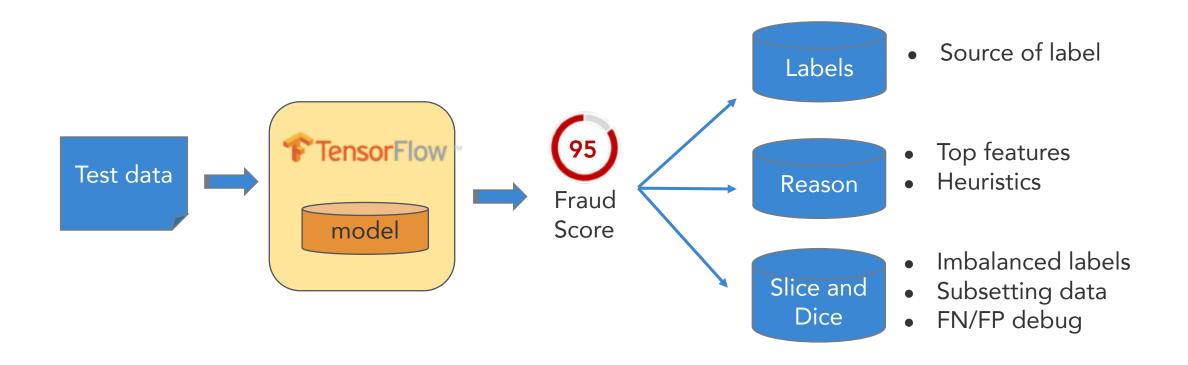
A Typical Machine Learning Workflow



Requirements:

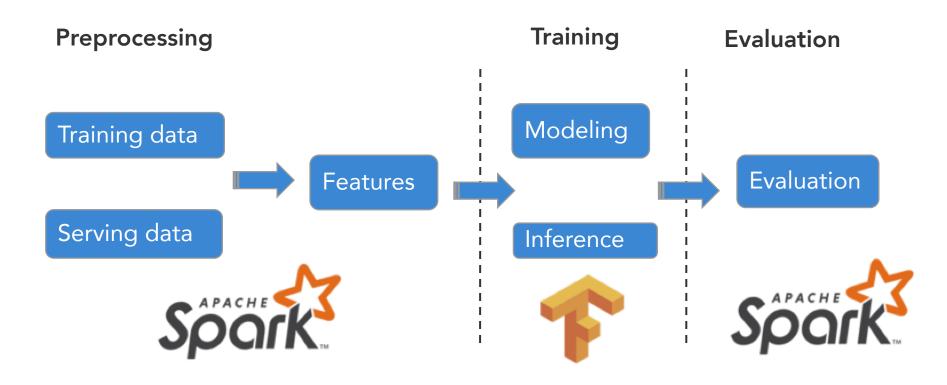
- 1. Treat anti-fraud application as a classification problem
- 2. Training serving consistency
- 3. Post analysis to understand model performance in new applications

Understanding Inference Results is Critical



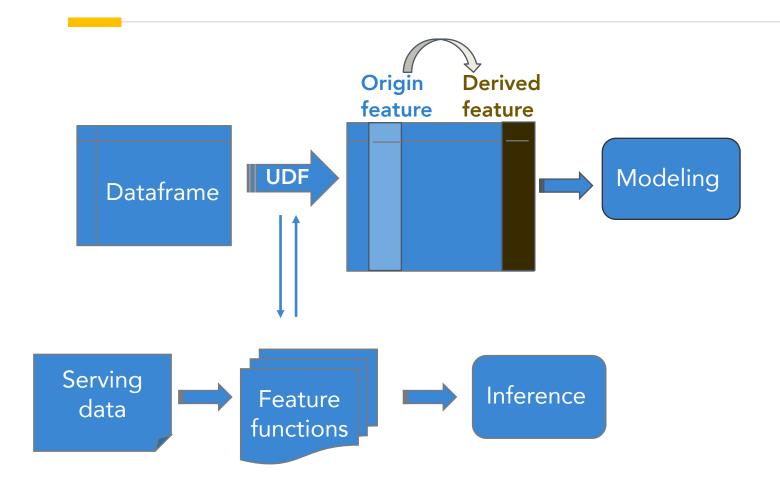
Being able to post-analyze on the inferred data is critical for model development

How We Leverage Spark and TensorFlow



- Spark is used in pre-processing pipeline to prepare training data for DL models
- TensorFlow is used to handle DL model training and serving workflows
- Spark is used for post-analysis and model evaluation

Spark for Generating Training and Serving Data



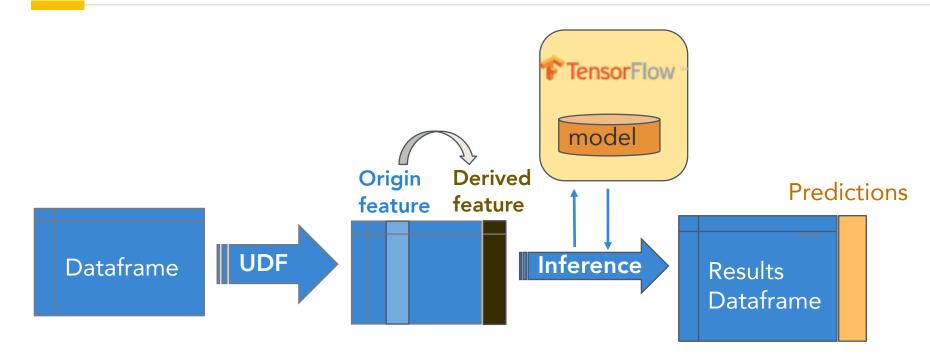
Pre-processing

- Load data into dataframe
- Each user defined function (UDF) is built from a feature function
- Uniform API

Serving

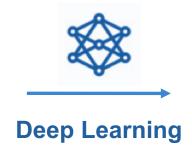
- Every entry of data point is preprocessed and then fed to DL model for inference
- The same feature function is used to process data at serving time

SparkSQL and TensorFlow Serving for Batch Inference



- Use dataframe API to load random testing data
- Leverage TF Serving for model inference
- Developed client (Java) to "talk" to TF model
- Inference result is returned as a new dataframe with one extra column "predictions"
- Post-analysis can be done on the resulting dataframe with both features and scores

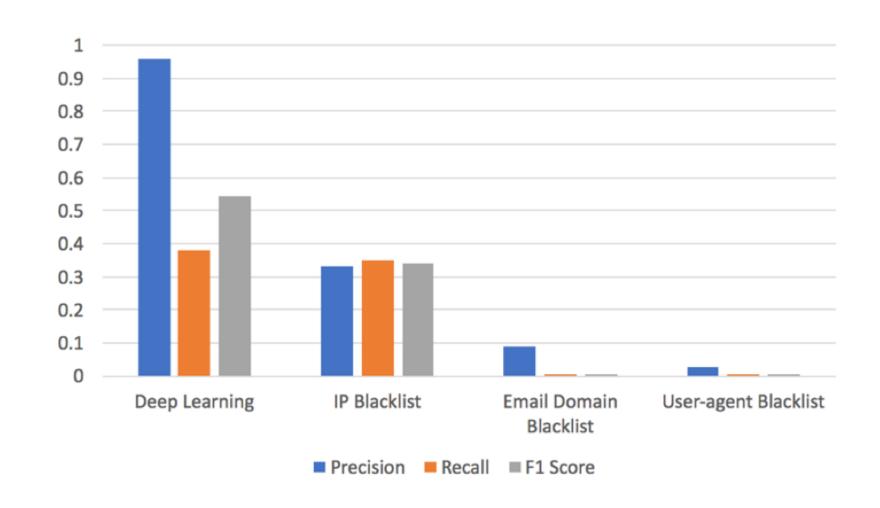
Leverage Combined Data



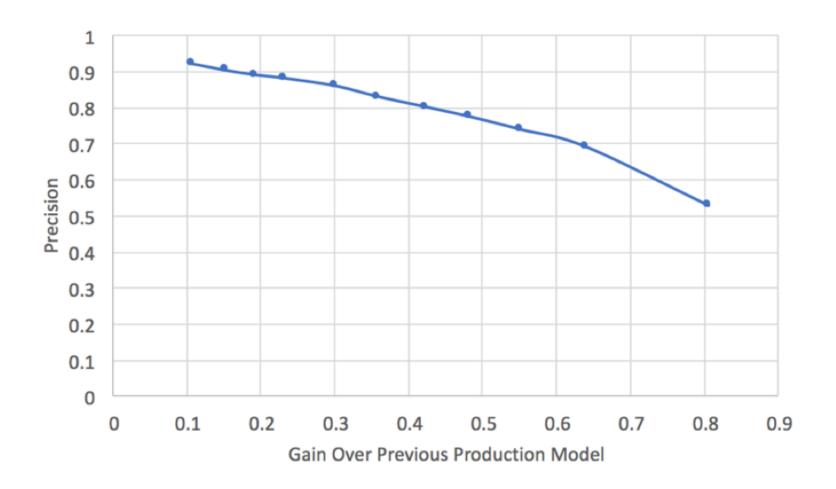
Derive granular user behavior information

- New user ratio
- Fraudulent user ratio
- First/Last seen time
- Proxy/Data center IP
- Geolocation
-

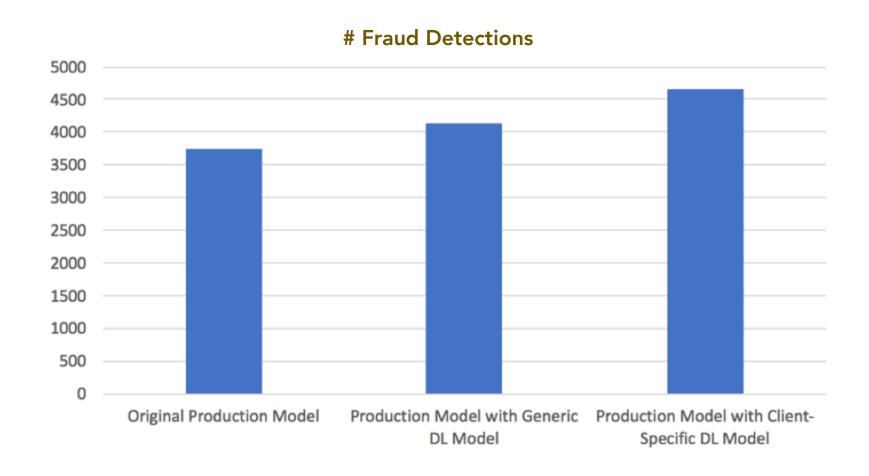
Evaluation: Multiple vs. Single Dimension



Improving Existing Production Model



Improving with Client-Specific Labels



Summary

- Spark + TensorFlow makes deep learning applications simpler
- Lessons from applying ML to new domain
 - Feature engineering
 - Post analysis to understand results
- Deployed successfully in production clients with improved results
- Thanks to Arthur Meng, Yang Xu, Yuetong Wang, Boduo Li

